
ACM Reference Format
Chen, J., Bautembach, D., Izadi, S. 2013. Scalable Real-time Volumentric Surface Reconstruction.
ACM Trans. Graph. 32, 4, Article 113 (July 2013), 10 pages. DOI = 10.1145/2461912.2461940
http://doi.acm.org/10.1145/2461912.2461940.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
Copyright © ACM 0730-0301/13/07-ART113 $15.00.
DOI: http://doi.acm.org/10.1145/2461912.2461940

Scalable Real-time Volumetric Surface Reconstruction

Jiawen Chen Dennis Bautembach Shahram Izadi

Microsoft Research, Cambridge, UK

Figure 1: We take depth maps from a consumer depth camera (top left) and fuse them into a single surface model (center & right) in real-time
using a compact GPU data structure. This allows live reconstruction of large-scale scenes with fine details (rendered w/ ambient occlusion).

Abstract

We address the fundamental challenge of scalability for real-time
volumetric surface reconstruction methods. We design a memory
efficient, hierarchical data structure for commodity graphics hard-
ware, which supports live reconstruction of large-scale scenes with
fine geometric details. Our sparse data structure fuses overlapping
depth maps from a moving depth camera into a single volumetric
representation, from which detailed surface models are extracted.
Our hierarchy losslessly streams data bidirectionally between GPU
and host, allowing for unbounded reconstructions. Our pipeline,
comprised of depth map post-processing, camera pose estimation,
volumetric fusion, surface extraction, and streaming, runs entirely in
real-time. We experimentally demonstrate that a shallow hierarchy
with relatively large branching factors yields the best memory/speed
tradeoff, consuming an order of magnitude less memory than a reg-
ular grid. We compare an implementation of our data structure to
existing methods and demonstrate higher-quality reconstructions on
a variety of large-scale scenes, all captured in real-time.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning;

Keywords: volumetric surface reconstruction, scalability, real-time,
hierarchical grid, streaming, Kinect, GPU

Links: DL PDF

1 Introduction

Surface reconstruction is an important and established problem in
computer graphics and computer vision, with many practical appli-
cations particularly for cultural heritage, special effects, gaming, and
fabrication. One subclass of this problem takes multiple overlapping,
noisy depth measurements of an object or a scene as input and fuses
them into a single 3D surface representation, which aims to closely
reflect the geometry of the real world. Depth can be estimated from
regular 2D images, using structure-from-motion (SfM) [Pollefeys
et al. 2008] or multi-view stereo (MVS) [Seitz et al. 2006] methods,
or from active sensors such as laser scanners or depth cameras, based
on triangulation or time-of-flight (ToF) techniques.

For triangulation-based active sensors, one well known approach
for surface reconstruction is the volumetric method of Curless and
Levoy [1996]. This method is particularly compelling as it gives high
quality reconstruction results using a computationally simple fusion
method. The approach makes no assumptions about the underlying
surface topology, uses the redundancy of overlapping depth samples,
captures the uncertainty of depth estimates, and fills small holes but
leaves unobserved regions empty.

Consumer depth cameras (such as Microsoft Kinect and Asus Xtion)
have made real-time depth sensing a commodity. This has naturally
led to an interest in applications of real-time surface reconstruction;
for example, for augmented reality (AR), where the geometry of the
real-world needs to be combined live with the virtual and rendered
immediately to the user, autonomous guidance, where a robot needs
to reconstruct and respond rapidly to the physical environment, or
even simply to provide instantaneous feedback to users as they scan
an object or scene.

KinectFusion [Newcombe et al. 2011b; Izadi et al. 2011] adopted
the method of Curless and Levoy and demonstrated compelling live
reconstructions from noisy Kinect depth maps, which were applied
to a variety of interactive scenarios [Izadi et al. 2011]. The data
structure that underpins this system, and the original Curless and
Levoy method, is typically a regular 3D grid, uniformly divided
into a set of voxels, mapped onto predefined physical dimensions.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

http://doi.acm.org/10.1145/2461912.2461940
http://portal.acm.org/ft_gateway.cfm?id=2461940&type=pdf

Although simple to implement, this data structure is memory inten-
sive. Surface geometry and free space are all densely represented,
growing cubically to accommodate larger physical volumes (at the
same voxel size).

Therefore a fundamental challenge to using such volumetric methods
for real-time reconstruction is scalability; i.e., to support larger-scale
reconstructions without sacrificing fine details or frame rate. This
paper addresses this very issue. Specifically we contribute:

• A fast and compact hierarchical GPU data structure, capable
of dynamic update, supporting fusion of live Kinect depth
maps and rendering of surfaces in real-time. This increases
the physical size and resolution of the reconstruction volume
using an order of magnitude less memory than a regular grid.

• A mechanism for losslessly streaming subsets of our data
structure between GPU and host, decoupling the active volume
from a predefined physical space.

The data structure has been intentionally designed to be flexible, and
as a secondary contribution, we experimentally derive the optimal
hierarchy layout. We show that with current hardware, a shallow hi-
erarchy of regular grids with relatively large branching factors yields
the best memory/speed tradeoff. We demonstrate reconstructions of
diverse indoor and outdoor scenes (under natural lighting conditions)
using a Kinect camera, with scale, quality, and speed. Finally, we
compare to a number of existing methods and demonstrate improved
reconstruction quality at scale.

2 Related work

Surface reconstruction aims to create a single 3D representation
from noisy measurements. One set of methods, work directly on
a complete set of unorganized points [Hoppe et al. 1992; Kazhdan
et al. 2006; Alliez et al. 2007], and can scale to large datasets using
out-of-core streaming techniques [Bolitho et al. 2007]. While these
approaches are general, they make no assumptions about the under-
lying acquisition process, disregarding measurement uncertainty and
the temporal nature of capture. For laser range sensors and depth
cameras, particularly triangulation-based methods, such information
can be crucial to achieving higher quality reconstruction.

To support such sensors and live reconstruction scenarios, methods
incrementally fuse overlapping depth measurements into a single
3D representation which is accumulated over time. Methods (such
as [Chen and Medioni 1992; Higuchi et al. 1995]) first register
depth maps into a single global coordinate system using variants of
the iterative closest point (ICP) algorithm [Besl and McKay 1992].
They average corresponding depth measurements in overlapping re-
gions, and make assumptions regarding the topology to fit polygons
to points parametrically. Mesh zippering [Turk and Levoy 1994]
stitches aligned meshes by first removing redundant triangles in over-
lapping regions and connecting their boundaries. These methods are
somewhat resilient to noise as overlapping points are averaged, but
are fragile to outliers and can fail in regions of high curvature due to
the topological approximations made.

2.1 Volumetric fusion

To overcome some of these limitations, methods using intermedi-
ate implicit representations for reconstruction have been proposed.
These methods typically use volumetric data structures either storing
simple state information such as occupancy [Connolly 1984; Chien
et al. 1988] or samples of a continuous function [Hilton et al. 1996;
Curless and Levoy 1996]. The former typically generate binary occu-
pancy grids from multiple range images, and share similarities with
voxel carving methods based on image silhouettes [Potmesil 1987;

Szeliski 1993]. Regular grids and more efficient octree or hierarchi-
cal representations have been proposed [Chien et al. 1988; Szeliski
1993]. These occupancy-based methods often only reconstruct the
visual hull of an object, typically at low quality.

In computer graphics, implicit surface representations based on
signed distance fields are common for rendering and physical simula-
tion (see [Osher and Fedkiw 2003]). The use of these representation
for depth map fusion was first proposed by Hilton et al. [1996], and
taken further by Curless and Levoy [1996] by accounting for the di-
rection of sensor uncertainty to approximate noise during acquisition.
Each depth map is converted into a signed distance field and cumu-
latively averaged into a regular voxel grid. The final surface can
then be extracted as the zero level-set of the implicit function using
isosurface polygonization (e.g., [Lorensen and Cline 1987]) or ray-
casting [Parker et al. 1998] methods. Wheeler et al. [1998] adapted
this method to extract surfaces from voxels based on consensus from
multiple range images to increase robustness to outliers.

This form of volumetric surface reconstruction carries many advan-
tages. It supports incremental updates, with fusion simply being the
weighted average of existing and new depth samples, approximates
systematic noise, and permits easy extraction of polygon meshes.
For active triangulation-based sensors, this fusion method generates
compelling results [Curless and Levoy 1996; Levoy et al. 2000;
Izadi et al. 2011; Newcombe et al. 2011b]. The main drawback of
these approaches is scalability, which is challenging when real-time
reconstruction is also desired. While a number of hierarchical data
structures have been proposed [Hilton et al. 1998; Fuhrmann and
Goesele 2011], they employ recursive data structures that are com-
putationally expensive, making real-time reconstruction prohibitive.

2.2 Reconstruction from 2D images

Despite the lack of exploration in real-time volumetric reconstruction
methods at scale, there has been considerable work on outdoor large-
scale 3D reconstruction (see [Musialski et al. 2012] for a detailed
review). These systems target general outdoor scenes, and therefore
rely on passive 2D cameras to generate depth maps using MVS or
SfM techniques [Seitz et al. 2006; Pollefeys et al. 2008]. Unlike ac-
tive sensors, depth estimation can result in non-systematic noise and
outliers, particularly if frame rate is critical. Therefore most systems
employ intermediate steps to regularize depth maps further (often
using volumetric data structures) by testing for photo-consistency,
visibility, and even shape priors across sets of captured images, be-
fore performing surface reconstruction using techniques that include
Curless and Levoy [Seitz et al. 2006; Pollefeys et al. 2004; Pollefeys
et al. 2008; Newcombe et al. 2011a]. Zach et al. [2007] adds explicit
spatial regularization to the method of Curless and Levoy, recasting
the problem as a global optimization, with impressive results but at
the cost of memory and speed.

These systems demonstrate impressive results given very low qual-
ity depth maps. However, the additional computational expense of
depth estimation and fusion results in a tradeoff between quality,
speed and scale. For example, [Pollefeys et al. 2004] show detailed
reconstructions of small scenes, but forgo quality at larger scales.
[Newcombe and Davison 2010; Newcombe et al. 2011a] show speed
and quality, but are limited to desktop-scale scenes. [Pollefeys et al.
2008] trades finer quality for real-time performance at scale. In our
work, we use readily-available active depth cameras. This constrains
the wider applicability of our method to a subset of outdoor scenes,
but still allows reconstructions under different natural lighting con-
ditions. It also lets us focus our contributions on the design of a
volumetric data structure that demonstrates all these three properties:
scale, quality and speed.

113:2 • J. Chen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

2.3 Real-time reconstruction using active sensors

The tradeoffs between scale, quality and speed have led some re-
searchers to forgo scale completely, and instead explore live recon-
structions of smaller scenes and objects, using active sensors to help
achieve interactive rates. In one of the first examples, Rusinkiewicz
et al. [2002], use a custom structured light sensor to scan a hand-held
object. The online algorithm first aligns point clouds (using a variant
of ICP), quantizes samples into a voxel grid, and uses splatting for
rendering. Higher quality surface reconstruction is achieved by an of-
fline Curless and Levoy implementation. Weise et al. [2009] extend
this approach to detect loop closure during a full 360 scan of a hand
held object, distorting the object as rigidly as possible to correct for
drift errors. Cui et al. [2010] use a hand-held low-resolution, noisy
ToF camera and a depth super resolution algorithm to rapidly scan a
single small object.

These previous systems demonstrate interactive performance, but are
focused on single-object reconstructions. Systems such as [Henry
et al. 2010; Hornung et al. 2013; Stückler and Behnke 2012] demon-
strate larger scale indoor reconstructions at lower frame rates (rang-
ing from ∼3-10Hz) with active sensors. Point and occupancy based
representations are used for reconstruction at scale. The focus of
these systems is not high quality surface reconstruction, but instead
dealing with the challenges of robust localization, loop closure and
correcting for model drift. These are important elements of Simulta-
neous Localization and Mapping (SLAM) systems, and while out of
scope for our work, have been the focus of considerable research in
the robotics community [Thrun et al. 2005].

KinectFusion [Newcombe et al. 2011b; Izadi et al. 2011] demon-
strated a real-time variant of Curless and Levoy [1996] to fuse noisy
Kinect depth maps. The implicit surface is stored in graphics mem-
ory as a regular voxel grid, and extracted by raycasting. This limits
high quality reconstructions to about (3m)3 physical size at 5123

voxel resolution, which requires ∼512MB of graphics memory. Yet
the compelling real-time results has led to several projects extending
the spatial scale of KinectFusion.

2.4 Extending KinectFusion

One simple approach to spatially extend KinectFusion is to stream
the current volume data out of graphics memory, clear the volume,
but maintain global camera pose to ensure new and previously gen-
erated surfaces share the same coordinate system. This approach
creates multiple overlapping surfaces that need to be merged as a
postprocess. Moving volume methods take the idea further, defining
an active region around the camera which (logically) moves with the
sensor. Approaches either transform the entire signed distance field
in the active region [Roth and Vona 2012], or use a less expensive
rolling buffer that re-indexes the grid and reallocates deactivated
regions [Whelan et al. 2012]. The latter system extracts a point cloud
from deactivated regions and periodically creates a mesh on the host.
These methods still rely on a regular grid, making the active region
small to ensure fine quality, and reconstruction is limited to scenes
where geometric structures are close by. A clipped active region can
also can affect tracking quality and user experience. Finally, once
streamed to host, data cannot be reintegrated back into the volume.

Although many efficient hierarchical data structures for rendering
exist [Crassin et al. 2009; Laine and Karras 2010], we require real-
time dynamic updates for fusion and surface extraction, making
many of these approaches impractical. Zhou et al. [2011] propose
a GPU-based octree which performs Poisson surface reconstruc-
tion [Kazhdan et al. 2006] on ∼300K vertices at interactive rates.
Zeng et al. [2013] extend this data structure to implement a 9 to
10 level octree for KinectFusion, and show results scaling up to a

moderately-sized office. While the closest work to ours, the reliance
on an octree imposes significant pointer overhead. We demonstrate
that shallower hierarchies are more efficient on current hardware
and scale better to larger scenes when combined with streaming. We
compare to these existing approaches in Section 6.

3 3D reconstruction pipeline

integrateestimate
pose

raw depth camera pose volume

model depth and normal maps

raycast

Figure 2: High level 3D reconstruction pipeline.

We seek to reconstruct both large-scale and fine-scale surface geom-
etry at real-time rates, by incrementally accumulating noisy depth
maps into a memory efficient volumetric data structure. We adopt the
method of Curless and Levoy [1996], and encode surfaces implicitly
as a signed distance field (SDF). Our pipeline is shown in Figure 2
and is based on the standard KinectFusion system [Izadi et al. 2011;
Newcombe et al. 2011b] but evolves to accommodate this new scal-
able structure. We briefly review this volumetric method to guide
the design of our data structure.

For now, we assume a regular dense 3D grid. The input to our
system is a sequence of noisy depth images Zi. We initialize the
camera to the origin, which is also the center of the virtual volume’s
front face. For each frame, we incrementally update the volume
by integrating (or fusing) surface observations into the stored SDF,
adding new data into empty regions or denoising existing data. Next,
we raycast the volume (using the current camera pose estimate),
marching individual rays through the grid, to find sign changes in
the SDF (the zero-crossing) and extract surface points and normals.
Finally, when the next depth map arrives, we use the point-plane
variant of the ICP algorithm [Chen and Medioni 1992] to estimate
the new camera pose by aligning the input depth measurements with
the extracted oriented points.

Integration Consider a single depth sample z = Z0(x, y). With-
out noise, the sample locally approximates the surface as a plane.
Each voxel in the grid whose center projects to the same (x, y) loca-
tion as this depth sample is part of the sample’s footprint. At each
voxel we store the distance from its center to the plane (with positive
values in front).

However, in the presence of noise, which for simplicity we model
as a Gaussian whose variance depends on depth N(z, σ(z)) [Chang
et al. 1994; Nguyen et al. 2012], the true surface is somewhere in
the vicinity of z. In the case where the camera is stationary, we can
incrementally obtain a least squares estimate of the SDF by weighted
averaging. Augment the SDF (D) with a weight (W) and initialize
each voxel in the grid to D = 0,W = 0. For each incoming sample
zi+1, update the grid with the rule Di+1 = (DiWi + di+1)/(Wi +
1),Wi+1 = Wi + 1, where di+1 is the signed distance from the
voxel center to the incoming sample. In the case where the camera
moves, it is clear that the current SDF Di becomes inconsistent with
the new depth frame Zi+1. It is impossible to obtain a full SDF
using only incremental accumulation.

Truncation and free space carving Curless and Levoy observed
that to handle a moving sensor, permit thin surfaces to be recon-

Scalable Real-time Volumetric Surface Reconstruction • 113:3

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

Root grid (fully allocated)

Level 1

Level 2 (leaves)

surface and
truncation region

nearSurface = false
childPtr = null

nearSurface = true
childPtr = <level1 addr>

due to noise, nearSurface = true
after this pass, nearSurface = false
childPtr = <level1 addr>

nearSurface = false
childPtr = null

TSDF sample:
 fixed16_t distance
 fixed16_t weight

nearSurface = true
childPtr = <level2 addr>

unaffected by
this depth image

Figure 3: Logical view of hierarchical data structure.

structed, and reduce computation, the SDF is only meaningful near
the surface and that distant voxels can be ignored. Therefore, they
use a truncated SDF (TSDF) region in the vicinity of the observation
(2σ(z) in our case). Notice however that an observed depth sample
yields more information than just near the surface: it indicates that
the entire ray up to the surface is unoccluded. Curless and Levoy
called this free space carving and explicitly mark these voxels as
“free space”. Therefore voxels exhibit three potential states: observed
free space, unobserved or near surface.

3.1 Data structure design

Our goal is to design a data structure that compactly represents a
TSDF and permits efficient integration and raycasting operations.

Exploiting sparsity The vast majority of the world is empty,
which is reflected by the fact that in a regular grid, most of the
voxels are marked as free space or unobserved. These voxels are
good candidates for compression. Curless and Levoy highlight this
sparsity in the data, and dynamically compress regions outside of
the truncation using run-length encoding (RLE). RLE does not nat-
urally map to our scenarios, as we require fast addition or removal
of surfaces, which would result in large overheads managing and
traversing runs on the GPU. Instead we design a hierarchical data
structure: near surfaces, we densely allocate voxels and store a high
resolution TSDF, integrating as before. However, completely free
space or unobserved regions is represented with coarser nodes.

Hierarchical representations Hierarchical data structures have a
long history in computer graphics and we discuss our design choices
here. They can be roughly divided into bounding volume hierar-
chies (BVHs), which cluster geometry and are used in traditional
polygon raytracing techniques, and spatial subdivisions methods,
which partition space. We rule out BVHs since our algorithm needs
to store dynamic SDFs and cannot afford to rebuild the hierarchy
every frame. While a number of spatial subdivision strategies are
available, we can disregard anisotropic structures such as kD-trees or
BSP-trees due to the fact that our moving depth camera reorients as
the user moves. Therefore, we choose a regular spatial subdivision.

Regular spatial subdivision still offers a number of choices. First, we
must choose a refinement strategy: at what point do we split a node?
At one extreme, with no refinement, we have a dense regular grid,
which scales as O(n3) in memory. At the other extreme, with full
dyadic refinement and data stored only in leaves, we have a complete
octree, which is space efficient, but results in a very deep hierarchy
that is difficult to update and traverse on a GPU. In between, we
can choose different branching factors at each level, resulting in
a hierarchical grid (or N3-tree). A final option is adaptive refine-
ment: represent the SDF at multiple resolutions by storing the value
at different levels of tree, splitting a node when it can no longer
summarize the variation within [Frisken et al. 2000].

We experimented with most of these options and show in Section 6
that a 3-4 level N3-tree with regular grids at nodes, without adaptive
refinement, yields the best memory/speed tradeoff. Although adap-
tive refinement works well for synthetic data [Frisken et al. 2000],
the highly anisotropic nature of our depth sample footprints makes
adaptive refinement challenging. As verified by [Chang et al. 1994;
Nguyen et al. 2012], the z uncertainty of a depth sample grows as
O(z2). Due to this elongated footprint, the standard subdivision rule
that splits a node until it is smaller than the sample footprint in all
three dimensions essentially causes full refinement. Similarly, for
rules that subdivide based on content, with a shallow tree optimized
for updating and raycasting, interior nodes never project to a small
enough screen area to capture sufficient detail.

Overview of data structure Figure 3 shows a logical view of our
data structure. The example hierarchy consists of three levels: the
root (in red) is a fully allocated grid and provides a coarse subdivi-
sion of the physical volume. According to our noise model [Nguyen
et al. 2012], the surface lies within the truncation region (in gray),
and any intersecting voxels will need to be refined. Refinement
proceeds recursively until we reach the leaf level (in blue), where
each node is a small regular grid. We sweep through the voxels
of the leaf grid and update the distances and weights accordingly.
Notice how the majority of root voxels are free space (in cyan), and
do not require refinement.

A common scenario that occurs due to noise or moving objects is
that a previously refined voxel (in yellow) is subsequently observed
as free space. Our strategy for dealing with these cases is to store
metadata at interior nodes, similar to a hierarchical z-buffer [Greene
et al. 1993]. In addition to a pointer to the node’s children, we
store a nearSurface flag, indicating whether any of its children are
potentially near a zero crossing, and a minWeight value, which is
the minimum of their weights. This metadata is updated during
integration with a summarization step, which propagates data up the
tree. The nearSurface flag lets the raycaster skip entire subtrees,
while minWeight optionally lets us “freeze” nodes (e.g., the voxel
in yellow) as free space when it is above some threshold and garbage
collect its children.

We extend the binary free space carving of Curless of Levoy to more
effectively fuse depth maps from the Kinect, which tend to be noisy
near silhouettes, causing flickering near object edges in the SDF. We
instead clamp the incoming SDF value di+1 to its maximum value
within the truncation region and perform weighted averaging instead.
This results in clean, rounded silhouette edges. Finally, in order to
accommodate depth uncertainty, we adapt the truncation size of the
SDF according to depth [Chang et al. 1994; Nguyen et al. 2012].

4 GPU implementation

We implement our 3D reconstruction pipeline on the GPU using
CUDA. This section details how the hierarchy is laid out in graphics
memory and traversed in parallel for integration and raycasting.

113:4 • J. Chen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

9 3 8 2 5 1 6 7

head

eltSize = l1Resolution * sizeof(GridDesc)

alloc()
tail

Level1 pool
free list

free()

... ...

backing store

...0 1 2 3

eltSize = l2Resolution * sizeof(TSDF)

3 1 4 2 9 6 5 8

head
alloc()

tail

Level2 pool (leaves)
free list

free()

... ...

backing store

...0 1 2 3

struct GridDesc
 bool nearSurface
 bool isDirty
 fixed16_t minWeight
 int poolIndex = 0
(packed in 8 bytes)

struct GridDesc
 ...
 int poolIndex = 2

struct TSDF
 fixed16_t distance
 fixed16_t weight

Figure 4: Memory view of hierarchy.

Memory layout We store our hierarchical grid in GPU memory
as a sparse pointer structure, which is visualized in Figure 4. The
root level grid is always fully allocated and stored as a dense 3D
array of GridDesc records, initialized to null. For each level of the
hierarchy, we preallocate a fixed-sized memory pool, consisting of a
free list and a backing store. The free list is simply a queue of block
indices, initialized to full (the list [0, 1, . . . n]). The backing store
is an array of n fixed-sized blocks, where each block has size equal
to an entire grid at that level. During integration, when a grid needs
to be allocated, a free block is dequeued from the free list using
an atomic operation, assigned to the poolIndex field, and marked
isDirty (since the memory block can contain anything). Similarly,
when we free a block during garbage collection, we atomically
enqueue its index back onto the free list. Note that since grid reso-
lution and element sizes can differ at each level in our flexible data
structure, we require a separate pool for each level. In particular,
a GridDesc occupies 2 bytes, whereas TSDF requires 4. We defer
pool size selection to Section 6.

Algorithm 1 Volumetric fusion/integration
1: for each voxel v do in parallel
2: if intersect(v, frustum) then
3: bbox2D ← boundingBox2D(project(v))
4: for all pixels p ∈ bbox2D do in parallel
5: z ← depthMap[p]
6: overlaps← intersect(truncationRegion(z,σ(z)),v)
7: anyOverlaps← parallelReduce(overlaps)
8: if threadId = 0 then
9: desc← grid[v]

10: descend← (anyOverlaps or hasChildren(desc))
11: if descend then
12: enqueue(jobQueue,v)
13: if !hasChildren(desc) then
14: desc.poolIndex← alloc()
15: desc.isDirty ← true

Integration Given a depth map, we integrate it into our hierarchy
in breadth-first order, as illustrated in Figure 3 and described with
pseudocode in Algorithm 1. For the interior levels of the tree (includ-
ing the root), we conservatively rasterize the footprint of the depth
map into successively finer voxel grids with recursion mediated by
atomic queues. The root grid does not require an input queue: the
voxel indices can be determined by conservatively clipping the cam-
era frustum. Root voxels are projected to large hexagons within the
depth map, assigned 1 thread-block per voxel, and rasterized using
many threads.

The algorithm for interior levels is nearly the same as for the root.
Since voxels now project to smaller hexagons, we instead assign one
thread-block per grid, with one thread per voxel. The grid descriptor
is retrieved from the input queue and if flagged isDirty, the threads
cooperatively clear it in parallel. Each thread then proceeds with
the rest of the algorithm (Algorithm 1, line 5 onwards), except
hexagon rasterization is done by a single thread. We stress that
careful conservative rasterization and intersection tests are necessary
to achieve seamless hole-free results. At interior nodes, voxels may
be large and simply projecting the voxel center (as in [Zeng et al.
2013]) can easily miss depth samples. Finally, at the leaf level, we
can assume that voxels are smaller than a pixel, in which case we
project its center, compute a TSDF value, and update the voxel.

Summarization To ensure that raycasting skips large portions
of free space away from geometry, we retain the job queues from
integration to perform summarization in parallel. As each leaf grid
is swept by parallel threads, if any SDF values are near surface
geometry (defined by having dwith magnitude less than the diagonal
of the leaf voxel), we perform a parallel reduction to set its grid
descriptor to nearSurface. Similarly, we use parallel reduction to
find the minimum weight in a leaf grid. Summarization proceeds
up the tree using the existing job queues until we reach the root.
We guarantee that if an interior voxel is not nearSurface, it can be
skipped over even though it may contain children. Conversely, a
voxel that is nearSurface must have children and must be traversed.
We optionally use the minWeight field as a heuristic for garbage
collection: if an interior voxel has a sufficiently high minWeight
and is not nearSurface, then it is unlikely to be in the future and
can be “frozen” as free space. We free the node’s children in the
next integration pass and skip integration in the future.

Raycasting We use a hierarchical variant of the DDA algorithm
[Amanatides and Woo 1987] to raycast our data structure on the
GPU, conservatively rasterizing a line on a hierarchical grid. We
maintain as state the previous distance along the ray (tp), the pre-
vious and current SDF values (dp and dc respectively), and a stack
of voxel indices down the hierarchy. We initialize DDA by setting
tp = 0 (at the eye) and traversing the tree to retrieve dp. At each
iteration of DDA, we step to the next voxel at the current level. If we
are at an interior node and it is marked nearSurface, then find the
closest voxel at the next level and push it onto the stack (otherwise,
do nothing). If we are at a leaf, then test whether there is a zero cross-
ing: dp > 0 and dc < 0. If so, the surface is at tz = tp +

dp
dp−dc

along the ray. Otherwise, set dp = dc and continue. Finally, if we
stepped past the bounds of the current grid, pop the stack. Note that
with DDA, the SDF is indexed directly without any filtering.

To compute the surface normal, needed for shading and ICP camera
tracking, we estimate the gradient of the SDF at the zero crossing
using first order finite differences and trilinear interpolation. Since
we use shallow trees with relatively large branching factors, the vast
majority of samples lie in the same leaf grid. We exploit this by
caching and reusing the tree traversal from the first sample, improv-
ing performance by a factor of 2.

Scalable Real-time Volumetric Surface Reconstruction • 113:5

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

5 Moving volumes and streaming

Our hierarchical representation enables interactive reconstruction of
relatively large volumes (at 10243 resolution, (4m)3 with (4mm)3

voxels, (8m)3 with (8mm)3 voxels). To further scale to unbounded
physical dimensions, we take inspiration from [Crassin et al. 2009;
Whelan et al. 2012] and decouple the physical volume from the
working set.

To decouple the physical position of the volume from voxel indices
in GPU memory, it helps to define a few terms. When we specify
a hierarchy, we choose the resolution (the number of voxels) at
each level, and a leaf level voxel size (in meters). These parameters
multiply to determine the physical size of a root voxel in meters.
We quantize the world coordinate system into units of root voxels,
which serve as unique keys indexing subtrees of the hierarchy (see
Figure 5). We define the working set to be the set of fixed 3D array
indices in GPU memory equal to the root grid resolution. Finally,
the active region is a cubical subset of the world coordinate system
(in meters) that is centered on the camera’s view frustum, but whose
origin is quantized to a root voxel in the world. To guarantee zero
contention, we enforce that the active region’s effective resolution
be one root voxel less than that of the working set along each axis.
This lets us map voxels of the active region to indices of the working
set using modular arithmetic.

in world coordinate system

in memory �xed
working set

subtrees to
stream out

old active region
mapped to working set

new active region
mapped to working set

subtrees to
stream in

old active region

new active region

Figure 5: Illustration of bidirectional moving volume streaming.
When the camera and active region moves, we determine which
subtrees need to be streamed to host, and which need to be cleared
or streamed back in.

Streaming from GPU to host is similar to integration and requires
two breadth-first traversals of the hierarchy. Given a list of working
set indices to stream out on the host, we copy them into a GPU queue
and perform a tree traversal to determine how much space is needed
for each subtree (using parallel reduction to compute the sum). We
perform a parallel prefix scan to compute offsets into a linear buffer
where each subtree will be stored. Finally, we perform one more
tree traversal to write each voxel into the linear buffer, replacing
poolIndex with a the byte offset from the beginning of each subtree.
This operation essentially converts a forest from breadth-first storage
to depth-first storage. We copy the linear buffer and list of offsets to

the host then store each serialized subtree in a dictionary. Streaming
from host to GPU is analogous.

Compared to Kintinuous [Whelan et al. 2012], which converts the
outgoing region to a triangle mesh, and Moving Volume KinectFu-
sion [Roth and Vona 2012], which resamples the overlapping region,
our approach is completely lossless. Due to the sparse nature of
our representation, we can stream data between the GPU and host
without noticeable performance hits. This lets the user revisit already
scanned areas without any meshing or interpolation artifacts.

6 Results

In this section, we first describe the design of our capture setup. We
then present the results of our experiments on how data structure
parameters affect performance and memory consumption, and com-
pare reconstruction quality with previous work. We purposefully
implemented our hierarchy as a generic structure to facilitate experi-
mentation with branching factors and tree depths. We pinpoint the
optimal configuration for current hardware.

6.1 Capture setup

In order to scan large-scale scenes, we design a semi-mobile client-
server architecture. The user interacts with the mobile client in the
field, which transmits depth maps to the server for reconstruction,
and displays raycasted images of the 3D model in real-time. Client
hardware is comprised of a lightweight laptop, battery pack, and
Kinect camera with attached touchscreen display. The user holds the
Kinect and uses the touchscreen to control and visualize the capture
process. The laptop and battery are carried in a backpack. The
server performs the actual reconstruction and consists of a desktop
workstation with a powerful GPU, powered with AC. The client
and server communicate over a wireless 802.11n network, which
theoretically provides 300 Mbps of bandwidth (2× 2 MIMO). By
transmitting only uncompressed depth frames (640× 480 at 30 Hz
and 16 bpp), we need 140 Mbps of bandwidth. In our experiments,
we can achieve on average about 24 Hz, depending on wireless
conditions. The emerging 802.11ac wireless standard is expected
to provide over 1.6 Gbps of bandwidth, which will be more than
sufficient for both color and depth.

6.2 Performance and memory consumption

We conducted all our experiments on the server, a desktop PC with
an Intel Xeon W3690 CPU at 3.46 GHz, 6 GB of RAM, and a sin-
gle GeForce GTX Titan GPU. We consistently use three 500 frame
sequences captured with a Kinect depth camera: DESK, a close-
range (2m) sequence with few holes in the depth data, BOOKSHOP,
a medium range (4m) sequence, and CYCLES, a challenging outdoor
sequence with 6.5m range, complex geometry, high levels of noise
and missing data in the depth maps. We measure GPU kernel execu-
tion time and memory consumption at 10243 and 20483 resolution
under a variety of tree configurations. All configurations and voxel
dimensions are cubic: a 10243 hierarchy that is 163 at the root, 83 at
level 1 and 83 at the leaf is denoted 16, 8, 8. Similarly, “4mm voxels”
denotes a tree whose voxels in the leaf grid are cubes measuring
4mm on each side.

Figure 6 plots the average combined integration and raycasting exe-
cution time for a 10243 grid as a function of hierarchy configuration
up to 5 levels. Note performance peaks at 3 levels and significantly
decreases beyond 4 levels. This is due to two factors. Integration is
performed breadth-first, which requires synchronization via queues
and offsets savings from a tighter bound. Raycasting is performed
depth-first, which requires stack space linear in the number of levels.

113:6 • J. Chen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

32,32
64,16

128,8
8,8,16

8,16,8
16,8,8

16,8,8*

16,4,16

16,16,4

8,4,4,8

8,4,8,4

8,8,4,4

16,4,4,4

4,4,4,4,4

m
ill

is
ec

on
ds

Performance

2 levels 3 levels 4 levels 5 levels

 0

 50

 100

 150

 200

 250

 300

 350
desk 4mm
desk 8mm
bookshop 4mm
bookshop 8mm
cycles 4mm
cycles 8mm

Figure 6: Average combined integration and raycasting runtime as
a function of hierarchy configuration. Our optimized implementation
is marked 16, 8, 8∗ and achieves 24-37 frames per second.

A deep tree also results in additional GPU warp divergence. Interest-
ingly, raycasting performance does not dramatically change between
4mm and 8mm voxels at the same resolution: DDA simply steps
through the grid regardless of physical size. Integration is however
much slower with larger voxels because we perform full hexagon
rasterization at the upper levels of the hierarchy. A detailed table
with additional configurations and a breakdown of timings between
integration and raycasting is in the supplemental material.

Note that these performance numbers reflect the more flexible, but
unoptimized version of our data structure. After deciding on the most
efficient configuration (16, 8, 8), we optimized our implementation
further. This included fixing the thread-block configuration, using
texture units once the number of levels was selected and caching
shared tree traversals for normal estimation across grid boundaries.
The optimized system runs at between 24-37 Hz across the 3 se-
quences shown for a 10243 volume at 4mm precision, and 20-30 Hz
for 20483. The rest of the pipeline including depth map prepro-
cessing, pose estimation and streaming takes 5-6ms, with streaming
taking on average 2ms.

In Figure 7, we plot memory consumption vs. hierarchy configura-
tion for a 10243 volume. As expected, smaller leaf grids consume
less memory as the tighter fitting nodes skip more free space. We see
diminishing returns after 4 levels. Notice how there is little variation
between the different branching factors at 4 levels given the tiny leaf
sizes. At 5 levels and beyond, memory consumption levels off as
pointer overhead dominates. In all cases, interior levels of the tree
are extremely sparsely allocated, with leaf grids occupying the vast
majority of memory. Therefore, we distribute 128 MB among all
interior level pools and allocate the remainder of our memory budget
(typically 512 MB-1 GB) to the leaf level pool. Not plotted is a
20483 volume (32,8,8) with 4mm voxels, which consumes 245 MB
of memory in the worst case with CYCLES. Our results compare
favorably to 512 MB and 1 GB for 5123 and 6403 regular grids,
respectively, and to previous work that use octrees [Zeng et al. 2013].
Figure 7 also shows the effect of voxel size: clearly, larger voxels
require less memory given the same input range and physical vol-
ume. For these experiments, we observe a “sweet spot” at 3 levels at
(16, 8, 8), for which we optimized our algorithms.

6.3 Scalability and reconstruction quality

Figure 9 and our companion video presents large-scale fine-detail
real-time reconstructions using our data structure. In these captures,
the user holds a semi-mobile Kinect camera, and moves around to

2 levels 3 levels 4 levels 5 levels

 0

 100

 200

 300

 400

 500

32,32
64,16

128,8
8,8,16

8,16,8
16,8,8

16,4,16

16,16,4

8,4,4,8

8,4,8,4

8,8,4,4

16,4,4,4

4,4,4,4,4

M
B

4mm voxels

desk
bookshop

cycles

 0

 20

 40

 60

 80

 100

 120

 140

32,32
64,16

128,8
8,8,16

8,16,8
16,8,8

16,4,16

16,16,4

8,4,4,8

8,4,8,4

8,8,4,4

16,4,4,4

4,4,4,4,4

M
B

8mm voxels

desk
bookshop

cycles

2 levels 3 levels 4 levels 5 levels

Figure 7: Memory consumption as a function of hierarchy config-
uration for three representative scenes with 4mm (top) and 8mm
voxels (bottom). The total resolution is 10243.

continuously capture and reconstruct the surrounding scene. The
extracted 3D model can be imported into CAD applications or games,
or leveraged in real-time AR or robot guidance applications. Direct
feedback is also important in ensuring the user fully captures the
scene during scanning. Our reconstructed datasets feature both
indoor and outdoor scenes. Although Kinect is an active sensor, we
have found that the sensor can work at moderately close range under
a variety of lighting conditions.

In the BOOKSHOP example, the user interactively reconstructs a
3D model of 3 floors of a book store in less than 6 minutes. The
user can walk up and down stairs, capturing fine geometry of books,
tables, and stairs. The use of both dense ICP and frame-to-model
alignment from KinectFusion allows some level of robustness when
people move in front of the sensor (a common scenario in real-world
capture). The CAR sequence was captured in ∼1 minute and the
PLANE in under 5 minutes (Figures 1, 9). COURTYARD shows a
very large (16m×12m×6m) reconstruction captured live with our
method. In the PASSAGE sequence, the user scans a variety of shops
down a passageway. Notice that the global model appears twisted in
places due to tracking errors. Drift mitigation using techniques such
as global bundle adjustment and loop closure are interesting areas of
future work but not directly addressed currently.

Qualitative comparison Figure 8 and the companion video com-
pares reconstruction quality between a moving regular grid [Whelan
et al. 2012; Roth and Vona 2012] with our moving hierarchy at equal
voxel dimension and equal physical extent. With 4mm voxels, a
moving regular grid only spans (2m)3, resulting in a clipped vol-
ume whereas the hierarchy makes full use of the sensor data. A

Scalable Real-time Volumetric Surface Reconstruction • 113:7

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

equal voxel resolution (4mm3)

equal physical extent (6m3)

moving regular grid (5123) moving hierarchy (10243)

regular grid (12mm3),
5123, 512 MB

hierarchy (3mm3)
20483, 174 MB

Figure 8: Quality comparison. Top: at equal voxel resolution,
our hierarchy permits a much larger active region compared to a
moving regular grid. Bottom: at equal physical extent, our hierarchy
captures significantly more detail in a fraction of the memory.

small active region may suffice for indoor scenes, but for larger
outdoor scenes, a large volume is necessary for reliable dense frame-
to-model tracking. In another comparison, at the same physical
extent of (6m)3 necessary to capture an office scene, a regular grid
[Newcombe et al. 2011b; Izadi et al. 2011] has 12mm voxels which
severely oversmoothes fine details, whereas the hierarchy faithfully
reconstructs details with 3mm precision in a fraction of the memory,
while remaining interactive (∼24 Hz).

6.4 Limitations and future work

As mentioned, the focus of this paper is our scalable data structure
and addressing issues of camera drift remains future work. In our ex-
periments, drift is highly scene dependent. “Outside-in” scans such
as CAR have minimal error and we are able to close the loop. Track-
ing error is more noticeable in “inside-out” scans and is especially
evident in long “forward-only” paths such as PASSAGE. A related
issue is relocalization when camera tracking fails. We implemented
a simple relocalizer that maintains a history of keyframes consisting
of a pose, a depth map, and a normal map. We create a new keyframe
whenever the camera moves past the basin of convergence for ICP
(empirically set to 15cm translation and 10◦ rotation). At runtime, if
ICP fails to converge, we exhaustively search the history. Robustly
handling drift, loop closure, and relocalization are longstanding
problems in the SLAM community and are clear areas for future
work. Other areas of future work include addressing limitations
in mobility (our current system relies on having a powerful server
within wireless range) and exploring the use of our data structure
with longer range sensors that have challenging noise characteristics,
such as passive stereo cameras.

7 Summary

We demonstrate the new capability of real-time volumetric recon-
struction at scale. We extend the method of Curless and Levoy to

interactively acquire both large- and fine-scale reconstructions. To
support this level of scalability, we design a fast, compact volumetric
data structure for commodity graphics hardware. Our results show
surface reconstructions of a variety of indoor and outdoor scenes,
without trading scale, quality or speed.

8 Acknowledgements

We thank Mat Cook, Andreas Georgiou, Steven Johnston, James
Scott, Kenji Takeda and Nicolas Villar for help in hardware setup and
data capture. We are grateful to Cambridge University, The Imperial
War Museum Duxford, Kelsey Kerridge Sports Centre, and The
Mill Pub for filming access. Thanks go to Timo Aila, Tero Karras,
and Jaakko Lehtinen for GPU programming wizardry; Christopher
Zach, Andrew Fitzgibbon, Sven Forstmann, Otmar Hilliges, and
Iason Oikonomidis for insightful discussions, and Emily Whiting
for providing the voiceover.

References

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN,
M. 2007. Voronoi-based variational reconstruction of unoriented
point sets. In Proc. SGP 2007, vol. 257, Eurographics, 39–48.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In Proc. Eurographics, vol. 87, 3–10.

BESL, P., AND MCKAY, N. 1992. A method for registration of 3-D
shapes. IEEE Trans. PAMI 14, 2, 239–256.

BOLITHO, M., KAZHDAN, M., BURNS, R., AND HOPPE, H. 2007.
Multilevel streaming for out-of-core surface reconstruction. In
Proc. SGP 2007, vol. 257, Eurographics, 69–78.

CHANG, C., CHATTERJEE, S., AND KUBE, P. R. 1994. A quan-
tization error analysis for convergent stereo. In Proc. ICIP 94,
vol. 2, IEEE, 735–739.

CHEN, Y., AND MEDIONI, G. 1992. Object modelling by registra-
tion of multiple range images. Image and vision computing 10, 3,
145–155.

CHIEN, C., SIM, Y., AND AGGARWAL, J. 1988. Generation of
volume/surface octree from range data. In Proc. CVPR 98, IEEE,
254–260.

CONNOLLY, C. 1984. Cumulative generation of octree models from
range data. In Proc. ICRA 84, vol. 1, IEEE, 25–32.

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E.
2009. GigaVoxels: Ray-guided streaming for efficient and de-
tailed voxel rendering. In Proc. I3D 2009, ACM, 15–22.

CUI, Y., SCHUON, S., CHAN, D., THRUN, S., AND THEOBALT, C.
2010. 3D shape scanning with a time-of-flight camera. In Proc.
CVPR 2010, IEEE, 1173–1180.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. In Proceedings of
SIGGRAPH 96, Annual Conference Series, 303–312.

FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T. 2000.
Adaptively sampled distance fields: a general representation of
shape for computer graphics. In Proceedings of SIGGRAPH 2000,
Annual Conference Series, 249–254.

FUHRMANN, S., AND GOESELE, M. 2011. Fusion of depth maps
with multiple scales. ACM Trans. Graph. 30, 6 (December),
148:1–148:8.

113:8 • J. Chen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

GREENE, N., KASS, M., MILLER, G., ET AL. 1993. Hierarchical
z-buffer visibility. In Proceedings of SIGGRAPH 93, Annual
Conference Series, 231–238.

HENRY, P., KRAININ, M., HERBST, E., REN, X., AND FOX, D.
2010. RGB-D mapping: Using depth cameras for dense 3D
modeling of indoor environments. In Proc. ISER, vol. 20, 22–25.

HIGUCHI, K., HEBERT, M., AND IKEUCHI, K. 1995. Building 3-d
models from unregistered range images. Graphical models and
image processing 57, 4, 315–333.

HILTON, A., STODDART, A., ILLINGWORTH, J., AND WINDEATT,
T. 1996. Reliable surface reconstruction from multiple range
images. Computer Vision (Proc. ECCV 96), 117–126.

HILTON, A., STODDART, A. J., ILLINGWORTH, J., AND
WINDEATT, T. 1998. Implicit surface-based geometric fusion.
Computer Vision and Image Understanding 69, 3, 273–291.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface reconstruction from unorganized
points. In Computer Graphics, vol. 26, 71–78.

HORNUNG, A., WURM, K. M., BENNEWITZ, M., STACHNISS, C.,
AND BURGARD, W. 2013. OctoMap: An efficient probabilistic
3D mapping framework based on octrees. Autonomous Robots
34, 3, 189–206.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREEMAN,
D., DAVISON, A., ET AL. 2011. KinectFusion: real-time 3D
reconstruction and interaction using a moving depth camera. In
Proc. UIST 2011, ACM, 559–568.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson sur-
face reconstruction. In Proc. SGP 2006, vol. 256, Eurographics,
61–70.

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel octrees.
In Proc. I3D 2010, ACM, 55–63.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., ET AL. 2000. The digital michelan-
gelo project: 3D scanning of large statues. In Proceedings of
SIGGRAPH 2000, Annual Conference Series, 131–144.

LORENSEN, W., AND CLINE, H. 1987. Marching cubes: A high res-
olution 3d surface construction algorithm. In Computer Graphics,
vol. 21, 163–169.

MUSIALSKI, P., WONKA, P., ALIAGA, D., WIMMER, M., VAN
GOOL, L., PURGATHOFER, W., MITRA, N., PAULY, M., WAND,
M., CEYLAN, D., ET AL. 2012. A survey of urban reconstruction.
In Proc. Eurographics 2012 STARs, Eurographics, 1–28.

NEWCOMBE, R., AND DAVISON, A. J. 2010. Live dense recon-
struction with a single moving camera. In Proc. CVPR 2010,
IEEE, 1498–1505.

NEWCOMBE, R., LOVEGROVE, S. J., AND DAVISON, A. J. 2011.
DTAM: Dense tracking and mapping in real-time. In Proc. ICCV
2011, IEEE, 2320–2327.

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D.,
KIM, D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES,
S., AND FITZGIBBON, A. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In Proc. ISMAR, IEEE, 127–136.

NGUYEN, C., IZADI, S., AND LOVELL, D. 2012. Modeling Kinect
sensor noise for improved 3D reconstruction and tracking. In
Proc. 3DIMPVT 2012, IEEE, 524–530.

OSHER, S., AND FEDKIW, R. P. 2003. Level set methods and dy-
namic implicit surfaces. Applied mathematical science. Springer,
New York, N.Y.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN,
P.-P. 1998. Interactive ray tracing for isosurface rendering. In
Proc. Visualization 98, IEEE, 233–238.

POLLEFEYS, M., VAN GOOL, L., VERGAUWEN, M., VERBIEST,
F., CORNELIS, K., TOPS, J., AND KOCH, R. 2004. Visual
modeling with a hand-held camera. IJCV 2004 59, 3, 207–232.

POLLEFEYS, M., NISTÉR, D., FRAHM, J., AKBARZADEH, A.,
MORDOHAI, P., CLIPP, B., ENGELS, C., GALLUP, D., KIM,
S., MERRELL, P., ET AL. 2008. Detailed real-time urban 3D
reconstruction from video. IJCV 2008 78, 2, 143–167.

POTMESIL, M. 1987. Generating octree models of 3d objects
from their silhouettes in a sequence of images. Computer Vision,
Graphics, and Image Processing 40, 1, 1–29.

ROTH, H., AND VONA, M. 2012. Moving volume KinectFusion.
In Proc. BMVC 2012, BMVA Press, 112.1–112.11.

RUSINKIEWICZ, S., HALL-HOLT, O., AND LEVOY, M. 2002.
Real-time 3D model acquisition. ACM Trans. Graph. 21, 3 (July),
438–446.

SEITZ, S., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND
SZELISKI, R. 2006. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proc. CVPR 2006, vol. 1,
IEEE, 519–528.

STÜCKLER, J., AND BEHNKE, S. 2012. Robust real-time registra-
tion of RGB-D images using multi-resolution surfel representa-
tions. In Proc. ROBOTIK 2012, VDE, 1–4.

SZELISKI, R. 1993. Rapid octree construction from image se-
quences. CVGIP Image Understanding 58, 23–23.

THRUN, S., BURGARD, W., FOX, D., ET AL. 2005. Probabilistic
Robotics. MIT Press, Cambridge, MA.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes
from range images. In Proceedings of SIGGRAPH 94, Annual
Conference Series, 311–318.

WEISE, T., WISMER, T., LEIBE, B., AND VAN GOOL, L. 2009.
In-hand scanning with online loop closure. In Proc. ICCV 2009
Workshops, IEEE, 1630–1637.

WHEELER, M., SATO, Y., AND IKEUCHI, K. 1998. Consensus
surfaces for modeling 3D objects from multiple range images. In
Proc. ICCV 98, IEEE, 917–924.

WHELAN, T., KAESS, M., FALLON, M., JOHANNSSON, H.,
LEONARD, J., AND MCDONALD, J. 2012. Kintinuous: Spa-
tially extended KinectFusion. In Proc. RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras.

ZACH, C., POCK, T., AND BISCHOF, H. 2007. A globally optimal
algorithm for robust TV-L1 range image integration. In Proc.
ICCV 2007, IEEE, 1–8.

ZENG, M., ZHAO, F., ZHENG, J., AND LIU, X. 2013. Octree-based
fusion for realtime 3d reconstruction. Graphical Models 75, 3
(May), 126–136.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2011. Data-
parallel octrees for surface reconstruction. IEEE Trans. Visualiza-
tion and Computer Graphics 17, 5, 669–681.

Scalable Real-time Volumetric Surface Reconstruction • 113:9

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

car

passage

bookshop

courtyard

Figure 9: Reconstruction gallery Insets show input color and depth frames from the Kinect camera. Smaller Phong shaded insets show live
raycasted signed distance fields. Extracted meshes are rendered using global illumination and shown large.

113:10 • J. Chen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 113, Publication Date: July 2013

